Serveur d'exploration sur les effecteurs de phytopathogènes

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Species Boundaries and Molecular Markers for the Classification of 16SrI Phytoplasmas Inferred by Genome Analysis.

Identifieur interne : 000047 ( Main/Exploration ); précédent : 000046; suivant : 000048

Species Boundaries and Molecular Markers for the Classification of 16SrI Phytoplasmas Inferred by Genome Analysis.

Auteurs : Shu-Ting Cho [Taïwan] ; Hung-Jui Kung [Taïwan] ; Weijie Huang [Royaume-Uni] ; Saskia A. Hogenhout [Royaume-Uni] ; Chih-Horng Kuo [Taïwan]

Source :

RBID : pubmed:32754131

Abstract

Phytoplasmas are plant-pathogenic bacteria that impact agriculture worldwide. The commonly adopted classification system for phytoplasmas is based on the restriction fragment length polymorphism (RFLP) analysis of their 16S rRNA genes. With the increased availability of phytoplasma genome sequences, the classification system can now be refined. This work examined 11 strains in the 16SrI group within the genus 'Candidatus Phytoplasma' and investigated the possible species boundaries. We confirmed that the RFLP classification method is problematic due to intragenomic variation of the 16S rRNA genes and uneven weighing of different nucleotide positions. Importantly, our results based on the molecular phylogeny, differentiations in chromosomal segments and gene content, and divergence in homologous sequences, all supported that these strains may be classified into multiple operational taxonomic units (OTUs) equivalent to species. Strains assigned to the same OTU share >97% genome-wide average nucleotide identity (ANI) and >78% of their protein-coding genes. In comparison, strains assigned to different OTUs share < 94% ANI and < 75% of their genes. Reduction in homologous recombination between OTUs is one possible explanation for the discontinuity in genome similarities, and these findings supported the proposal that 95% ANI could serve as a cutoff for distinguishing species in bacteria. Additionally, critical examination of these results and the raw sequencing reads led to the identification of one genome that was presumably mis-assembled by combining two sequencing libraries built from phytoplasmas belonging to different OTUs. This finding provided a cautionary tale for working on uncultivated bacteria. Based on the new understanding of phytoplasma divergence and the current genome availability, we developed five molecular markers that could be used for multilocus sequence analysis (MLSA). By selecting markers that are short yet highly informative, and are distributed evenly across the chromosome, these markers provided a cost-effective system that is robust against recombination. Finally, examination of the effector gene distribution further confirmed the rapid gains and losses of these genes, as well as the involvement of potential mobile units (PMUs) in their molecular evolution. Future improvements on the taxon sampling of phytoplasma genomes will allow further expansions of similar analysis, and thus contribute to phytoplasma taxonomy and diagnostics.

DOI: 10.3389/fmicb.2020.01531
PubMed: 32754131
PubMed Central: PMC7366425


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Species Boundaries and Molecular Markers for the Classification of 16SrI Phytoplasmas Inferred by Genome Analysis.</title>
<author>
<name sortKey="Cho, Shu Ting" sort="Cho, Shu Ting" uniqKey="Cho S" first="Shu-Ting" last="Cho">Shu-Ting Cho</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan.</nlm:affiliation>
<country xml:lang="fr">Taïwan</country>
<wicri:regionArea>Institute of Plant and Microbial Biology, Academia Sinica, Taipei</wicri:regionArea>
<wicri:noRegion>Taipei</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kung, Hung Jui" sort="Kung, Hung Jui" uniqKey="Kung H" first="Hung-Jui" last="Kung">Hung-Jui Kung</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan.</nlm:affiliation>
<country xml:lang="fr">Taïwan</country>
<wicri:regionArea>Institute of Plant and Microbial Biology, Academia Sinica, Taipei</wicri:regionArea>
<wicri:noRegion>Taipei</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Huang, Weijie" sort="Huang, Weijie" uniqKey="Huang W" first="Weijie" last="Huang">Weijie Huang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Crop Genetics, John Innes Centre, Norwich, United Kingdom.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Department of Crop Genetics, John Innes Centre, Norwich</wicri:regionArea>
<wicri:noRegion>Norwich</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hogenhout, Saskia A" sort="Hogenhout, Saskia A" uniqKey="Hogenhout S" first="Saskia A" last="Hogenhout">Saskia A. Hogenhout</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Crop Genetics, John Innes Centre, Norwich, United Kingdom.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Department of Crop Genetics, John Innes Centre, Norwich</wicri:regionArea>
<wicri:noRegion>Norwich</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kuo, Chih Horng" sort="Kuo, Chih Horng" uniqKey="Kuo C" first="Chih-Horng" last="Kuo">Chih-Horng Kuo</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan.</nlm:affiliation>
<country xml:lang="fr">Taïwan</country>
<wicri:regionArea>Institute of Plant and Microbial Biology, Academia Sinica, Taipei</wicri:regionArea>
<wicri:noRegion>Taipei</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32754131</idno>
<idno type="pmid">32754131</idno>
<idno type="doi">10.3389/fmicb.2020.01531</idno>
<idno type="pmc">PMC7366425</idno>
<idno type="wicri:Area/Main/Corpus">000163</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000163</idno>
<idno type="wicri:Area/Main/Curation">000163</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000163</idno>
<idno type="wicri:Area/Main/Exploration">000163</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Species Boundaries and Molecular Markers for the Classification of 16SrI Phytoplasmas Inferred by Genome Analysis.</title>
<author>
<name sortKey="Cho, Shu Ting" sort="Cho, Shu Ting" uniqKey="Cho S" first="Shu-Ting" last="Cho">Shu-Ting Cho</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan.</nlm:affiliation>
<country xml:lang="fr">Taïwan</country>
<wicri:regionArea>Institute of Plant and Microbial Biology, Academia Sinica, Taipei</wicri:regionArea>
<wicri:noRegion>Taipei</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kung, Hung Jui" sort="Kung, Hung Jui" uniqKey="Kung H" first="Hung-Jui" last="Kung">Hung-Jui Kung</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan.</nlm:affiliation>
<country xml:lang="fr">Taïwan</country>
<wicri:regionArea>Institute of Plant and Microbial Biology, Academia Sinica, Taipei</wicri:regionArea>
<wicri:noRegion>Taipei</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Huang, Weijie" sort="Huang, Weijie" uniqKey="Huang W" first="Weijie" last="Huang">Weijie Huang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Crop Genetics, John Innes Centre, Norwich, United Kingdom.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Department of Crop Genetics, John Innes Centre, Norwich</wicri:regionArea>
<wicri:noRegion>Norwich</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hogenhout, Saskia A" sort="Hogenhout, Saskia A" uniqKey="Hogenhout S" first="Saskia A" last="Hogenhout">Saskia A. Hogenhout</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Crop Genetics, John Innes Centre, Norwich, United Kingdom.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Department of Crop Genetics, John Innes Centre, Norwich</wicri:regionArea>
<wicri:noRegion>Norwich</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kuo, Chih Horng" sort="Kuo, Chih Horng" uniqKey="Kuo C" first="Chih-Horng" last="Kuo">Chih-Horng Kuo</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan.</nlm:affiliation>
<country xml:lang="fr">Taïwan</country>
<wicri:regionArea>Institute of Plant and Microbial Biology, Academia Sinica, Taipei</wicri:regionArea>
<wicri:noRegion>Taipei</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Frontiers in microbiology</title>
<idno type="ISSN">1664-302X</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Phytoplasmas are plant-pathogenic bacteria that impact agriculture worldwide. The commonly adopted classification system for phytoplasmas is based on the restriction fragment length polymorphism (RFLP) analysis of their 16S rRNA genes. With the increased availability of phytoplasma genome sequences, the classification system can now be refined. This work examined 11 strains in the 16SrI group within the genus '
<i>Candidatus</i>
Phytoplasma' and investigated the possible species boundaries. We confirmed that the RFLP classification method is problematic due to intragenomic variation of the 16S rRNA genes and uneven weighing of different nucleotide positions. Importantly, our results based on the molecular phylogeny, differentiations in chromosomal segments and gene content, and divergence in homologous sequences, all supported that these strains may be classified into multiple operational taxonomic units (OTUs) equivalent to species. Strains assigned to the same OTU share >97% genome-wide average nucleotide identity (ANI) and >78% of their protein-coding genes. In comparison, strains assigned to different OTUs share < 94% ANI and < 75% of their genes. Reduction in homologous recombination between OTUs is one possible explanation for the discontinuity in genome similarities, and these findings supported the proposal that 95% ANI could serve as a cutoff for distinguishing species in bacteria. Additionally, critical examination of these results and the raw sequencing reads led to the identification of one genome that was presumably mis-assembled by combining two sequencing libraries built from phytoplasmas belonging to different OTUs. This finding provided a cautionary tale for working on uncultivated bacteria. Based on the new understanding of phytoplasma divergence and the current genome availability, we developed five molecular markers that could be used for multilocus sequence analysis (MLSA). By selecting markers that are short yet highly informative, and are distributed evenly across the chromosome, these markers provided a cost-effective system that is robust against recombination. Finally, examination of the effector gene distribution further confirmed the rapid gains and losses of these genes, as well as the involvement of potential mobile units (PMUs) in their molecular evolution. Future improvements on the taxon sampling of phytoplasma genomes will allow further expansions of similar analysis, and thus contribute to phytoplasma taxonomy and diagnostics.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">32754131</PMID>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>28</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">1664-302X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>11</Volume>
<PubDate>
<Year>2020</Year>
</PubDate>
</JournalIssue>
<Title>Frontiers in microbiology</Title>
<ISOAbbreviation>Front Microbiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Species Boundaries and Molecular Markers for the Classification of 16SrI Phytoplasmas Inferred by Genome Analysis.</ArticleTitle>
<Pagination>
<MedlinePgn>1531</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3389/fmicb.2020.01531</ELocationID>
<Abstract>
<AbstractText>Phytoplasmas are plant-pathogenic bacteria that impact agriculture worldwide. The commonly adopted classification system for phytoplasmas is based on the restriction fragment length polymorphism (RFLP) analysis of their 16S rRNA genes. With the increased availability of phytoplasma genome sequences, the classification system can now be refined. This work examined 11 strains in the 16SrI group within the genus '
<i>Candidatus</i>
Phytoplasma' and investigated the possible species boundaries. We confirmed that the RFLP classification method is problematic due to intragenomic variation of the 16S rRNA genes and uneven weighing of different nucleotide positions. Importantly, our results based on the molecular phylogeny, differentiations in chromosomal segments and gene content, and divergence in homologous sequences, all supported that these strains may be classified into multiple operational taxonomic units (OTUs) equivalent to species. Strains assigned to the same OTU share >97% genome-wide average nucleotide identity (ANI) and >78% of their protein-coding genes. In comparison, strains assigned to different OTUs share < 94% ANI and < 75% of their genes. Reduction in homologous recombination between OTUs is one possible explanation for the discontinuity in genome similarities, and these findings supported the proposal that 95% ANI could serve as a cutoff for distinguishing species in bacteria. Additionally, critical examination of these results and the raw sequencing reads led to the identification of one genome that was presumably mis-assembled by combining two sequencing libraries built from phytoplasmas belonging to different OTUs. This finding provided a cautionary tale for working on uncultivated bacteria. Based on the new understanding of phytoplasma divergence and the current genome availability, we developed five molecular markers that could be used for multilocus sequence analysis (MLSA). By selecting markers that are short yet highly informative, and are distributed evenly across the chromosome, these markers provided a cost-effective system that is robust against recombination. Finally, examination of the effector gene distribution further confirmed the rapid gains and losses of these genes, as well as the involvement of potential mobile units (PMUs) in their molecular evolution. Future improvements on the taxon sampling of phytoplasma genomes will allow further expansions of similar analysis, and thus contribute to phytoplasma taxonomy and diagnostics.</AbstractText>
<CopyrightInformation>Copyright © 2020 Cho, Kung, Huang, Hogenhout and Kuo.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Cho</LastName>
<ForeName>Shu-Ting</ForeName>
<Initials>ST</Initials>
<AffiliationInfo>
<Affiliation>Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kung</LastName>
<ForeName>Hung-Jui</ForeName>
<Initials>HJ</Initials>
<AffiliationInfo>
<Affiliation>Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Huang</LastName>
<ForeName>Weijie</ForeName>
<Initials>W</Initials>
<AffiliationInfo>
<Affiliation>Department of Crop Genetics, John Innes Centre, Norwich, United Kingdom.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hogenhout</LastName>
<ForeName>Saskia A</ForeName>
<Initials>SA</Initials>
<AffiliationInfo>
<Affiliation>Department of Crop Genetics, John Innes Centre, Norwich, United Kingdom.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kuo</LastName>
<ForeName>Chih-Horng</ForeName>
<Initials>CH</Initials>
<AffiliationInfo>
<Affiliation>Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>07</Month>
<Day>10</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Front Microbiol</MedlineTA>
<NlmUniqueID>101548977</NlmUniqueID>
<ISSNLinking>1664-302X</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">average nucleotide diversity</Keyword>
<Keyword MajorTopicYN="N">comparative genomics</Keyword>
<Keyword MajorTopicYN="N">effector</Keyword>
<Keyword MajorTopicYN="N">multilocus sequence analysis</Keyword>
<Keyword MajorTopicYN="N">plant pathogen</Keyword>
<Keyword MajorTopicYN="N">taxonomy</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>01</Month>
<Day>31</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>06</Month>
<Day>12</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>8</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>8</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>8</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32754131</ArticleId>
<ArticleId IdType="doi">10.3389/fmicb.2020.01531</ArticleId>
<ArticleId IdType="pmc">PMC7366425</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Nat Biotechnol. 2018 Nov;36(10):996-1004</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30148503</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2014 Dec 10;4:7399</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25492247</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014 May 05;9(5):e96436</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24798075</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2012 Jun 1;28(11):1536-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22495750</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Announc. 2014 Sep 18;2(5):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25291766</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2009 Jul 15;25(14):1754-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19451168</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Apr 14;106(15):6416-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19329488</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Syst Evol Microbiol. 2009 Oct;59(Pt 10):2582-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19622670</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Syst Evol Microbiol. 2016 May;66(5):2121-2123</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26928977</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2013 Aug;162(4):2005-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23784461</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2009 Aug;19(8):1450-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19502381</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2005 Mar;71(3):1501-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15746353</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Syst Bacteriol. 1999 Jul;49 Pt 3:1275-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10425791</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2014 May;78(4):541-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24597566</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Announc. 2015 Oct 15;3(5):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26472824</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2018 Nov 30;9(1):5114</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30504855</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2000 Jan;17(1):32-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10666704</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Announc. 2017 Jun 1;5(22):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28572316</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Syst Appl Microbiol. 2013 Dec;36(8):539-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24034865</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2014 Mar;164(3):1456-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24464367</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2008 Jun 26;9:306</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18582369</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2010 Sep 15;26(18):2334-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20624783</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2018 Nov 26;69(22):5389-5401</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30165491</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Resour Announc. 2018 Sep 27;7(12):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30533656</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2015 Apr;81(7):2591-602</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25636844</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2016 Jun 23;7:885</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27446117</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2007 Aug;24(8):1586-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17483113</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2013 Jan 16;14:22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23324436</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiology. 1997 Oct;143 ( Pt 10):3381-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9353940</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(3):e34407</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22479625</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Oct;157(2):831-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21849514</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2006 Jul 1;34(Web Server issue):W609-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16845082</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Syst Evol Microbiol. 2004 Jul;54(Pt 4):1243-1255</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15280299</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2018 Aug;44:39-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29547737</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Direct. 2009 Sep 29;4:35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19788732</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2004 Jan;36(1):27-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14661021</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Syst Evol Microbiol. 2007 Aug;57(Pt 8):1704-1710</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17684241</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2018 Sep 19;19(1):689</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30231900</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2019 Sep;13(9):2319-2333</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31110262</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2019 Apr;37(4):420-423</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30778233</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol Evol. 2018 Aug 1;10(8):2130-2139</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30102350</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2008 Jul;9(4):403-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18705857</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2003 Sep;13(9):2178-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12952885</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Syst Biol. 2003 Oct;52(5):696-704</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14530136</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Probes. 2006 Apr;20(2):87-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16330183</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2009 Jan;22(1):18-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19061399</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2006 May;188(10):3682-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16672622</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1996 Sep;62(9):3133-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8795200</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2018 Feb 6;13(2):e0192379</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29408883</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2011;49:175-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21838574</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Syst Evol Microbiol. 2004 Jul;54(Pt 4):1037-1048</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15280267</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2009 May 1;25(9):1189-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19151095</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014 Dec 31;9(12):e116039</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25551224</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013 Apr 23;8(4):e62770</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23626855</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1992 Apr;174(8):2606-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1556079</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2001 Jan 19;305(3):567-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11152613</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Syst Appl Microbiol. 2019 Mar;42(2):117-127</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30455068</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Syst Evol Microbiol. 2007 Sep;57(Pt 9):2037-2051</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17766869</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Resour Announc. 2019 Apr 25;8(17):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31023813</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Nov 29;108(48):E1254-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22065743</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2018 Dec;19(12):2623-2634</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30047227</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2017 Nov;11(11):2399-2406</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28731467</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2019 Jun 17;85(13):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31028021</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2009 Aug 15;25(16):2078-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19505943</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Microbiol. 2000;54:221-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11018129</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Dis. 2014 Mar;98(3):299-305</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30708443</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2018 Sep 15;34(18):3094-3100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29750242</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Syst Appl Microbiol. 2015 Jun;38(4):237-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25959541</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2008 Jun;190(11):3979-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18359806</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Syst Evol Microbiol. 2008 Oct;58(Pt 10):2368-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18842858</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol Evol. 2017 Feb 10;:</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28186559</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2019 Sep 19;10:2194</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31608032</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2009 Dec 15;10:421</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20003500</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mob Genet Elements. 2013 Sep 1;3(5):e26145</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24251068</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2004 Mar 19;32(5):1792-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15034147</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2017 Mar 1;119(5):869-884</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28069632</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2018 Jul 15;34(14):2371-2375</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29506021</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Feb 15;102(7):2567-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15701695</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2018 Jan 4;46(D1):D41-D47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29140468</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Royaume-Uni</li>
<li>Taïwan</li>
</country>
</list>
<tree>
<country name="Taïwan">
<noRegion>
<name sortKey="Cho, Shu Ting" sort="Cho, Shu Ting" uniqKey="Cho S" first="Shu-Ting" last="Cho">Shu-Ting Cho</name>
</noRegion>
<name sortKey="Kung, Hung Jui" sort="Kung, Hung Jui" uniqKey="Kung H" first="Hung-Jui" last="Kung">Hung-Jui Kung</name>
<name sortKey="Kuo, Chih Horng" sort="Kuo, Chih Horng" uniqKey="Kuo C" first="Chih-Horng" last="Kuo">Chih-Horng Kuo</name>
</country>
<country name="Royaume-Uni">
<noRegion>
<name sortKey="Huang, Weijie" sort="Huang, Weijie" uniqKey="Huang W" first="Weijie" last="Huang">Weijie Huang</name>
</noRegion>
<name sortKey="Hogenhout, Saskia A" sort="Hogenhout, Saskia A" uniqKey="Hogenhout S" first="Saskia A" last="Hogenhout">Saskia A. Hogenhout</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PlantPathoEffV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000047 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000047 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PlantPathoEffV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32754131
   |texte=   Species Boundaries and Molecular Markers for the Classification of 16SrI Phytoplasmas Inferred by Genome Analysis.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32754131" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PlantPathoEffV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat Nov 21 16:00:34 2020. Site generation: Sat Nov 21 16:01:01 2020